Directional structure tensors in estimating seismic structural and stratigraphic orientations
نویسندگان
چکیده
S U M M A R Y Estimating orientations of seismic structures (reflections) and stratigraphic features (channels) is important for seismic interpretation, subsurface interpolation and geophysical inversion. Structure tensors, constructed as smoothed outer products of amplitude gradients, are commonly used to estimate seismic reflection normals, which uniquely define the reflection orientations. However, this conventional structure-tensor method often generates significant errors in estimating orientations of the reflections with steep and rapidly varying slopes. To better estimate reflection orientations, we propose to construct structure tensors in a new space, where the reflections are mostly flat or only slightly dipping and the variation of reflection slopes is reduced. We use these constructed structure tensors to compute reflection normals in this new space and then transform the normals back to obtain a better estimation of reflection orientations in the original space. Seismic stratigraphic features such as channels are often aligned within dipping reflections. It is not discussed previously by others to estimate orientations of such features directly from a seismic image. An ideal way to estimate stratigraphic orientations is to first extract a horizon surface with stratigraphic features, and then construct structure tensors with gradients on the surface to estimate the orientations of the features. However, extracting horizon surfaces can be a difficult and time-consuming task in practice. Fortunately, computing gradients on a horizon surface is only a local operation and is equivalent to directly compute directional derivatives along reflection slopes without picking horizons. Based on this observation, we propose to use an equivalent but more efficient way to estimate seismic stratigraphic orientations by using structure tensors constructed with the directional derivatives along reflections. We demonstrate the methods of estimating structural and stratigraphic orientations using 3-D synthetic and real examples.
منابع مشابه
Directional structure-tensor-based coherence to detect seismic faults and channels
Seismic coherence is widely used in seismic interpretation and reservoir characterization to highlight (with low values) faults and stratigraphic features from a seismic image. A coherence image can be computed from the eigenvalues of conventional structure tenors, which are outer products of gradients of a seismic image. I have developed a simple but effective method to improve such a coherenc...
متن کاملStructure-, stratigraphy- and fault-guided regularization in geophysical inversion
S U M M A R Y Geophysical inversion is often ill-posed because of inaccurate and insufficient data. Regularization is often applied to the inversion problem to obtain a stable solution by imposing additional constraints on the model. Common regularization schemes impose isotropic smoothness on solutions and may have difficulties in obtaining geologically reasonable models that are often suppose...
متن کاملEffect of earthquake directional uncertainty on the seismic response of jacket-type offshore platform
In the seismic risk assessment of structures, two main random variables are involved, namely the vulnerability of the structure and the seismic action. The aim of the study presented here is to analyze the seismic behavior of the jacket-type offshore platforms as an expensive and vital structure. Furthermore, the influence of the incidence angle of the seismic action is also investigated by usi...
متن کاملInteractive 3D seismic fault detection on the Graphics Hardware
This paper presents a 3D, volumetric, seismic fault detection system that relies on a novel set of nonlinear filters combined with a GPU (Graphics Processing Unit) implementation, which makes interactive nonlinear, volumetric processing feasible. The method uses a 3D structure tensor to robustly measure seismic orientations. These tensors guide an anisotropic diffusion, which reduces noise in t...
متن کاملBuilding 3D subsurface models conforming to seismic structural and stratigraphic features
Subsurface modeling from seismic and borehole data is important for reservoir prediction, geophysical exploration, and production. A reasonable model should honor borehole rock properties and conform to seismic structural and stratigraphic features. Such a subsurface model can be difficult to build in cases complicated by faults and unconformities. Automatic and semiautomatic methods have been ...
متن کامل